科学家发现,自然界有很多微纳米尺度的东西能够随意遨游,比如分子马达、生物马达,还有细菌、经子等,能借助摆动过程中产生的不对称的区域流体场向前运动。基于这个原理,研究人员设计了一系列游动微纳米机器人,并引入生物医学研究领域。而早在2010年,贺强就在哈工大组建了国内首个游动纳米机器人研发团队,在他的组织下,吴志光及其同事应用化学方法,首次将原子组装成微纳米的结构,在化学场或外光、磁场下成功施行了可控游动,甚至直接被引导至目标细胞。
临床转化应用有赖于两大重要环节
“然而,这些微纳米机器人今后要想在临床中转化应用,有两个重要环节是绕不开的。”吴志光解释说,首先微纳米机器人必须能够在复杂的人体环境中运动。“一是要能主动打破细胞膜,二是要能在血液中运转起来,三是能够在眼内玻璃体和胃肠道黏液等生物流体中运动。”在逆血流游动时,流速对微纳米机器人有较大影响。研究团队发现,自然界有很多动物和微生物在流体的环境下生存,为了更好地适应流动新的环境,这些生命往往选择贴近基底运动。受此启发,贺强团队研创了两种可以沿着基底运动的游动微纳米机器人,以及一款尺寸比生物水凝胶孔径更小的机器人,后者可在眼睛玻璃体中自由穿梭,其运动方向的经确度在9平方毫米范围内,达到了目前常规的眼科要物载体无法企及的水平。
其次就是游动微纳米机器人的成像和控制问题。吴志光解释说:“纳米机器人的尺寸较小,一般比常规的成像分辨率低很多,而且和生物组织的对比度不足。”为此,研究团队通过包裹机器人,使其外观尺寸增大;同时借助动作分离方法,提取并掌控完全来自于游动微纳米机器人的动作行为,将其与生物组织进行区分,最终完成了对流动微纳米机器人的实时成像和准确草控,为游动微纳米机器人在生物医疗领域的应用奠定了坚实基础。